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Abstract. A new explicit analytical solution is obtained to a steady-state abrupt interface problem concerning
sea-water intrusion into a coastal unconfined homogeneous aquifer with a horizontal impermeable bed and uni-
formly distributed losses along a phreatic surface. Two free surfaces (encroachment tongue and groundwater
table) intersect with a horizontal water table of the resting sea water propagated inland. In the hodograph
plane the image of the physical domain is a curvilinear triangle. Conformal mappings of the physical domain
and of an unknown complex-potential domain onto an auxiliary half-plane are obtained by a modified method
of Polubarinova-Kochina, which is mathematically reduced to a vector Riemann boundary-value problem. Free
surfaces are reconstructed for different values of losses, densities of the two fluids, sea water and incident
groundwater hydraulic heads. Comparisons with the Dupuit–Forcheimer (hydraulic) model are made and practical
implications for catchment-scale groundwater management in Oman and UAE are discussed.
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1. Hydrological motivation

Sea-water intrusion in coastal aquifers can be caused by overdraft of groundwater through
wells (“point sinks”), losses to evapotranspiration from the water table (“distributed sink”),
reduced recharge to the water table owing to climatological decline of precipitation or
increased runoff over an anthropogenically changing catchment area, rising sea level and sea-
water density, among others (the glossary of some hydrological terms is given on our web-
site http://www.squ.edu.om/agr/depts/swae/research/intrusion/index.html). Sea-water tongues
encroached into shallow unconfined aquifers have a detrimental impact on plant and crop roots
in the soil horizons and on water wells, especially in the arid climates of Oman and UAE [1,
2] where combatting intrusion by hydraulic barriers (e.g. polders) is impossible because of the
absence of any fresh surface water.

Accurate prediction of intrusion is necessary to implement adequate coastal watershed
management strategies, in particular, to mitigate the salinisation damage and to ration pump-
ing. Investigation of horizontal and vertical salinity fields is commonly done by geophysi-
cal methods (e.g. time-domain electromagnetic sounding and profiling and borehole resistivity
measurements). Mathematical models of intrusion are relatively cheap and fast alternatives.
They are based on either a variable salinity-density flow (cases 4.2–4.3 from [3]) or abrupt
interface flow (case 4.1 from [3]). In this paper we shall study the latter, focusing on a flow
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pattern typical for arid conditions which is characterized by low natural replenishment of
groundwater and high abstraction rates.

To the best of our knowledge, all sharp interface models mimicking sea-water intrusion in
unconfined coastal aquifers (see for example, [4, Figures 9-1, 9-2, 9-5, 9-6, 9-9, 9-11b, 9-12,
9-14, 9-15, 9-16, 9-17, 9-18, 9-19, 9-20, 9-23, 9-30, 9-37]) consider fresh groundwater to be in
direct hydraulic contact with the beach slope (horizontal or tilted). In other words, ground-
water, at least partially, is postulated to discharge into the sea. This conceptualization implies
that a borehole drilled at any proximity to the shore line will first tap a fresh-water zone
below which saline water lies under the interface. Consequently, at the corresponding part
of the discharging slope (fresh-sea-water contact line) a boundary condition similar to the
seepage-face condition in the dam problem holds [5] that in the particular case of a horizontal
beach [4, Section 9-3] degenerates into a constant-head condition. “Classical” sharp-interface
problems originated from the Ghyben–Herzberg model. It was developed and validated in the
humid climates of Holland and Germany. There, the groundwater compartment of the annual
hydrological cycle always gains moisture through the water table from the vadose1 zone com-
partment. Correspondingly, in most books and papers [4, Figure 9.11], [6, Figure 4.6], [7,
Figure 7.10] a phreatic surface is modelled as an isobar with a distributed source (uniform
recharge from the vadose zone).

However, in arid countries many shallow aquifers are in completely different conditions
of net losses and continuous reduction of storage. For example, in Oman [8] numerous data
show that, despite a continuing groundwater flow from the highland part of catchments, no
fresh groundwater zone near the shore line is detected and salinity of shallow subsurface
water equals or even exceeds [9] that of sea water. In other words, in coastal areas, wells, even
through the highest sections of their screens, do not tap any fresh water.

Historical trends [8] indicate also that, in the past, coastal aquifers in Oman and UAE
were characterized by “classical” unconfined groundwater-flow patterns with groundwater/sea-
water contact at the beach line (sometimes indicated by submarine springs). During the past
30–40 years drilled wells proliferated; electrical pumps have been installed with the main part
of pumped water applied for nearby irrigation. On the one hand, sandy soils and sedimen-
tary rock constituting upper coastal aquifers [8] have high conductivity and one can expect
a significant percentage of return recharge percolating to the water table. On the other hand,
intensive evaporation from the soil surface after watering events not only accumulates salts in
the soil profile but also makes the aquifer water balance strongly negative. As a result, sea-
water tongues (usually delineated by sharp interfaces) have crept up to 5–6 km inland [8] and
are continuing to advance at an alarming rate. For example, in [10] daily intrusion volumes
of 140,000 m3 were reported for a catchment group having a coastal-strip length of 80 km.

Total depletion of fresh water from the coast devastated many agricultural farms that
relied on shallow dug wells. Abandoned farms and wells are plentiful in the Batinah area of
Oman. When sea water invades and/or soil is salinised, the farm is closed, any groundwater
discharge from its area stops but the pumping activity shifts further inland with the piezo-
metric trough and intrusion progressing correspondingly. Coastal towns are more difficult to
relocate and potable water is supplied to them in cisterns which are often filled from the high-
land wells in the same catchment.

Thus, in many coastal arid areas the aquifer input from the mountains is completely inter-
cepted by multiple wells clustered in a progressively shrinking strip. In a plan view, this strip

1Vadose refers to the region in the earth’s crust just above the permanent groundwater level.
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(in Batinah of a width of 5–10 km) is bounded from one side by an advancing saline zone
and from another by a geographical limit of agriculturally feasible soil [8].

The main goal of this paper is to study analytically intrusion with a lost contact between
groundwater and sea and with a distributed sink condition along a phreatic surface. We will
find the free surfaces and investigate the hydrological sustainability of the strip in which fresh
groundwater is still available.

2. Conceptual model

We obtain an analytical, 2-D, non-Dupuit-Forchheimer solution to the problem shown in
Figure 1 that illustrates a vertical section of a sea-encroached aquifer. We assume steady, 2-D,
Darcian, fully saturated unconfined groundwater flow in a homogeneous isotropic aquifer of
conductivity k. A fresh-water zone Gz is bounded by the water table AB, with elevation H f

above CU at a distance L from point A. Point A located at a distance Ls from the shore line
marks the leftmost upper point of the intrusion zone. The densities of fresh groundwater and
sea water, separated from each other by a sharp interface AD, are ρ f and ρs , respectively.

The invaded sea-water zone Gs is stagnant and forms a trapezium DASU, side AD of
which is curved. We assume that the saline phreatic surface is horizontal and coincides
with MSL (mean sea level). AS separates Gs from a dry soil above and the height of the
encroached trapezium is Hs . A curved AS would imply that encroached water also moves due
to evaporation [11].

Domains Gz and Gs are bounded from below by an impermeable horizontal bedrock.
Line AD in Figure 1 delineates the tongue, the toe of which, D, is a distance l to the

left of A. Note that point A is a “triple” point, i.e., a point where the two phreatic sur-
faces “meet” the interface (or, in other words, where the unsaturated zone contacts fresh and
sea water). This point is specific for our conceptual model. A “triple” point was first investi-
gated in [12, pp. 334–340] where canal fresh-water lenses floating on heavier saline indigenous
groundwater were studied. Similar hydrodynamic regimes with brine-oil-gas interfaces meeting
at a triple point were investigated in [13].

Next, we assume that along the fresh-water phreatic surface AB the losses are distributed
uniformly. These losses can be caused by evaporation or capillary rise [14] if the water table is
close to the ground surface. On a watershed scale this distributed sink can simulate pumping
from Gz if we spread the total pumped quantity over the whole water table. The assumption
regarding uniform losses, although not perfect, is necessary for our mathematical technique.
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Mathematically, AB and AD are two free boundaries, i.e., they are not known a priori and
should be found as part of the solution along with the distribution of the hydraulic head and
Darcian velocity in the flow domain.

In order to corroborate the validity of the flow regime in Figure 1 we dug near-shore pits,
collected soil and groundwater samples, monitored regularly the EC (electrical conductance)
of water from installed piezometers and conducted a geophysical survey using an OhmMap-
per TR2. All field data indicate that a sea-water intrusion zone does not occur as a “classi-
cal” quasi-triangular tongue [4, Figure 9.11] but is more like a trapezium-type slug completely
blocking fresh-water discharge into the sea.

3. Statement of the boundary-value problem

The hydraulic head h(x, y) in Gz is defined as p/γ = h − y where p denotes the fresh-water
pressure and γ =ρ f g is the specific weight of fresh water. As we work with the gauge pressure
and originate our coordinate system at point A in Figure 1, we have h A =0. Consequently, hBC =
k(H f − Hs) where k is the saturated hydraulic conductivity. We introduce a velocity potential
�=−kh and the complex potential w=�+ i�, where � is a nondimensional stream function
(complex conjugated with �), which varies from 0 at point A to Q at point B. The complex-
potential domain Gw is shown in Figure 2a. Note that BA is not a streamline; it is depicted
schematically in Figure 2a. Note also that from the balance of pressures in the fresh and the
sea water at point D we have �D =−Hs/δ, where δ=ρ f /(ρs −ρ f ). Consequently, in order to
ensure that xD > xC the following inequality should hold: q = (H f − Hs)/Hs >1/δ. Graphically
this means that point D is to the right of point C in Gw (Figure 2a).

According to Darcy’s law the specific discharge vector �V is �V =∇�. We introduce also the
complex physical coordinate z = x + iy.

Functions � and � satisfy the Laplace equation

��(x, y)=0, ��(x, y)=0. (1)

The boundary conditions for w and z are

�+ ky =0, �+ εx =0 along AB
�=−k(H f − Hs), x =−L along BC
�=0, y =−Hs along C D
�− cy =0, �=0 along D A

(2)

where the conductivity is 0<k<∞, the rate of losses through AB is 0<ε<∞, c=k/δ (c/k ≈
0·03 in the Gulf of Oman but generally ε≤ c<∞). The first line in (2) adopted from [12,
pp. 53–54] states that the losses from Gz are uniformly distributed along AB. This implies,
in particular, that Q = εL. This smeared-losses condition has been used recently in [11, 20].
Capillary fringe is also neglected. The second line in (2) sets a feeding groundwater level in
the upper catchment where pumping-evaporation can be neglected (pre-intrusion level). The
incident groundwater flow coming through BC is normally unidirectional and obeys well the
Dupuit-Forchheimer (DF) model, i.e., BC is indeed an equipotential line. The third line in
(2) reflects impermeability of the subjacent bedrock. The fourth line includes the no-flow con-
dition along the interface (we assumed sea water to be stagnant) and continuity of pressure
across D A, i.e., no capillary jump exists on this free boundary.

Obviously, in (2) H f > Hs >0. If Hs > H f , fresh water and interface do not exist and sea
water seeps through BC as in [12, pp. 264–280] (a rectangular dam problem). From (2) we



Analytical solution to a sea-water intrusion problem 201

C

B Q

AD
-k(Hf -Hs)

(w)

φ

Ψ

Gw

-cHs

(a)

ε

u

v

C

A

BD
GV

c
(b)

CBA D
ξ

η(c)

D
0 1 xc

(ζ) 

Hodograph 
curvilinear 
triangleComplex potential 

curvilinear triangle

Auxiliary half-plane

k

(V)

(d)

x

B

A

D

Gz

hf

hs

D1

D2

LD

lD
l

Uniform losses

hf0

y

Hf

Hs

C

Figure 2. (a) Complex potential domain, (b) hodograph, (c) auxiliary plain, and (d) hydraulic model.

can easily construct the hodograph domain GV where V =u + iv; here u and v are the hori-
zontal and vertical components of �V . As is shown in Figure 2b, GV is a curvilinear triangle.
From the hodograph we can understand why ε≤ c. If this inequality does not hold, the flow
scheme in Figure 1 does not exist.

We denote by z(ζ ) the conformal mapping of the upper half-plane ζ > 0 in an auxiliary
plane (Figure 2c) onto Gz with the following correspondence of points A→0, B →1, C → xc,
and D →∞ with an unknown parameter xc>1. This function has to be found.

Second, we introduce two auxiliary functions

F(ζ )=dw(ζ )/dζ, Z(ζ )=dz(ζ )/d ζ

We can rewrite (2) as

Im[i F + k Z ]=Im[F + i εZ ]=0 along AB,
Im[i F]=Im[i Z ]=0 along BC,
ImF =Im Z =0 along C D,
Im[i F − cZ ]=Im F =0 along D A.

(3)

The function ω=dw/d z = F/Z is complex-conjugated with V =u + iv, i.e., ω(z) is holomor-
phic and V (z) is antiholomorphic. We have to determine F(ζ ) and Z(ζ ) and then, by inte-
gration, reconstruct z(ζ ) and w(ζ ).
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4. Solution

As is clear from (3), the problem can be treated by the Polubarinova-Kochina (PK) method
that has been recently used in modelling viscous flows, diffusion, and seepage [5, 15–20].

We note that in Gz the angle at point C is 90 degrees because we assumed a vertical
constant head line BC and a horizontal bedrock. Similarly, in Gw we have the same angle
because BC is an equipotential line and C D is a streamline. Therefore, F(ζ ) and Z(ζ ) can
be represented as

F(ζ )=−i F0(ζ )/
√

xc − ζ , Z(ζ )=−i Z0(ζ )/
√

xc − ζ (4)

with F0, Z0 being holomorphic functions at the point xc. PK calls point C a “removable”
singularity.

Let us fix the branch of the radical
√

xc − ζ in the upper half-plane, Im ζ >0, by the con-
dition −π <arg(xc − ζ )<0. Now we transform (3) in the auxiliary half-plane as

Im[XK2]=0, −∞<ξ <0,
Im[XK1]=0, 0<ξ <1,
ImX =0, ξ >1,

(5)

where X is a vector:

X = (F0, Z0) (6)

and K j , j =1,2 are matrices:

K1 =
∥
∥
∥
∥

1 i
−i k −ε

∥
∥
∥
∥ , K2 =

∥
∥
∥
∥

1 i
i c 0

∥
∥
∥
∥ (7)

Because of (5), the vector-function

U(ζ )=
{

X(ζ ), Im ζ >0

X(ζ )K 2 K −1
2 , Im ζ <0

(8)

is the analytical continuation of the function (6) into the lower half-plane through the half-
axis (−∞,0) (an overbar means complex conjugation). Our vector function satisfies the con-
ditions:

U+(ξ)=U−(ξ), ξ <0 (9)

U+(ξ)=U−(ξ)T1, 0<ξ <1; U+(ξ)=U−(ξ)T2, ξ >1

where

T1=K2 K
−1
2 K 1 K −1

1 = 1
k+ε

∥
∥
∥
∥

k − ε−4kε/c −2i(c − ε+ k)/c
−2i kε k − ε

∥
∥
∥
∥ ,

T2=K2 K
−1
2 =

∥
∥
∥
∥
−1 2i/c
0 −1

∥
∥
∥
∥ .

(10)

Besides, from (8) the solution of problem (9) has to satisfy the symmetry condition

U(ζ )T2 ≡U(ζ ) (11)

We look for a solution of problem (9), (11). This solution integrable singularities at the points
0,1 and ∞.
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Thus, we have arrived at the well-known Riemann boundary-value problem (9) for a two-
dimensional vector function (6) with a piece-wise constant coefficient [21, 22]. We find the
exponents of singularities at the points ζ = 0, ζ = 1 and ζ = ∞ by a modified PK method.
Namely, it is easy to prove that the exponents are equal to the arguments, divided by 2π , of
the eigenvalues of matrices T1, T −1

1 T2, and T −1
2 . It is convenient to take the required eigen-

values as λ1 =λ2 =exp[i 2π(1/2−α)], λ3 =λ4 =exp[i 2π(1/2−β)], and λ5 =λ6 =−1, which are
the eigenvalues of the matrix T1, T −1

1 T2, and T −1
2 , correspondingly. Here

2πα=arccos
ε− k +2kε/c

k + ε , 2πβ=arccos
k − ε
k + ε (12)

are the internal angles at the vertices A, B of the curvilinear triangle AB D in Figure 2c.
Accordingly, the exponents are ±(1/2−α) at the point ζ =0 and ±(1/2−β), 1/2 at the points
ζ =1, ζ =∞, respectively.

Let us consider now the Riemann P-function

P




0 1 ∞

α−1/2 β−1/2 3/2
−α−1/2 −β−1/2 3/2

; ζ




= ζ α−1/2(1− ζ )β−1/2 P




0 1 ∞
0 0 1/2+α+β

−2α −2β 1/2+α+β
; ζ





= ζα−1/2(1− ζ )β−1/2F(1/2+α+β,1/2+α+β;1+2α; ζ ),
where F(p,q; r; ζ ) is the hypergeometric function.

The components of the Riemann P-function differ from the found exponents in integers.
If these components were equal to the exponents, then one would arrive at the solution of
the problem (9) with only one component having ζ = 0 and ζ = 1 as singular points and
another component would be bounded at these points. We note that the PK method adds a
certain integer to the exponent to match the behaviour of the pair of searched functions at
the three singular points. Qualitatively, this behaviour can be retrieved directly from the corre-
sponding domains in the physical plane and hodograph. The choice of the components of the
P-function depends on the conformal mapping determined by w(ζ ) and z(ζ ). From Figure 1
and Figure 2a we can infer that the derivatives of these two functions can not be bounded at
ζ = 0 and ζ = 1, i.e., w′(ζ ) and z′(ζ ) have integrable singularities there. As regards the third
singular point ζ =∞, from Figure 2a we can see that F0 behaves there as ∼ζ−3/2. From Fig-
ure 2b we can see that Z0 at infinity behaves as ∼ ζ−3/2 log ζ .

The above hypergeometric function is a solution of the hypergeometric equation

ζ(1− ζ )Y ′′ + [1+2α−2(1+α+β)ζ ]Y ′ − (1/2+α+β)2Y =0.

This equation has another solution ζ−2αF(1/2−α+β,1/2−α+β;1−2α; ζ ), which is linearly
independent of the first one. Both these solutions are defined in the disk |ζ |<1. We denote

Y1(0)= (1− ζ )β−1/2 f (ζ ;α,β), Y2(0)= (1− ζ )β−1/2 f (ζ ;−α,β), (13)

where

f (ζ ;α,β)=B
(

1
2
+α+β, 1

2
+α−β

)
(−ζ )α−1/2F

(
1
2
+α+β, 1

2
+α+β;1+2α; ζ

)

The multiplier in the last expression (the Beta-function, B(x, y)) is factored out to simplify the
following evaluations. The branches of the functions (−ζ )ν and (1−ζ )µ are fixed in C\ (0,∞)
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and C\ (1,∞) by the conditions |arg (−ζ )|<π and |arg (1−ζ )|<π , respectively. The functions
fixed in this manner satisfy the same symmetry condition f (ζ )≡ f (ζ ). Hence, both functions
(13) satisfy the same symmetry condition too.

Now we look for the components of the unknown vector (8) that constitute a linear com-
bination of functions (13), i.e.,

U = (Y1,Y2)C0 =YC0, (14)

where Y j =Y j (0), j =1,2, in the vicinity of zero and C0 is a 2×2 constant matrix:

C0 =
∥
∥
∥
∥

c11 c12

c21 c22

∥
∥
∥
∥ ,

which components ci j have to be determined from the boundary conditions (9) and symmetry
condition (11).

It can be easily proved that, if a function U(ζ ) is a solution of the problem (9), then
U(ζ )T2, as well as

U(ζ )+U(ζ )T2, (15)

are solutions of the same problem and (15) meets the symmetry condition (11).
Invoking (9), (13), (14), we get for 0<ξ <1:

U+(ξ)=Y+C0, U−(ξ)=Y+diag(e−i 2π(1/2−α), ei 2π(1/2−α))C0

Hence, the function (14) satisfies the first of the boundary conditions (9) if

diag(ei 2π(1/2−α), e−i 2π(1/2−α))=C0T1C−1
0 .

Consequently, after some algebra, we derive

C0 =diag(c1, c2)

∥
∥
∥
∥

−aλ −i bλ
aλ i bλ

∥
∥
∥
∥ (16)

where the unknown complex components c1, c2 are to be defined later, and

a =√
εkc, b =√

c − ε+ k, λ2 =
√
εk + i

√
(c − ε)(c + k)√

c(c − ε+ k)
. (17)

To check the second condition in (9) we have to continue the hypergeometric functions in (13)
into the vicinity of ζ =∞. The needed analytical continuation is ([23, Equation 15.3.13])

Y1(∞)=(−ζ )−β−1(1−ζ )β−1/2
∞∑

n=0

(
1
2 +α+β

)

n

(
1
2 −α+β

)

n
(n!)2 ζ−n (hn+ln(−ζ )) ,

Y2(∞)=Y1(∞)+hY∞,
(18)

where (p)q =�(p +q)/�(q), and �(·) is the Gamma function,

Y∞ = (−ζ )−β−1(1− ζ )β−1/2F(1/2+α+β,1/2−α+β;1;1/ζ ). (19)

The constant h =h′
n −hn in (18) is

hn =2ψ(n +1)−ψ( 1
2 +α+β+n)−ψ( 1

2 +α−β−n),

h′
n =2ψ(n +1)−ψ( 1

2 −α+β+n)−ψ( 1
2 −α−β−n),

(20)
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where ψ(ζ ) is the Psi function. Note that the difference h = h′
n − hn does not depend on n.

Indeed, using [24, Equation 6.358.8] and (20), (12), we get

h =π (tanπ(α−β)+ tanπ(α+β))= 2π
√
(c − ε)(c + k)√

εk
. (21)

For 1<ξ we have Y j = Y j (∞), j = 1,2. Then from the second condition (9) and (18)–(21) it
follows

Y+C0 = (−Y+ −2π |Y∞|(1,1))C0T2

or

Y+C0(E + T2)=−2π |Y∞|(1,1)C0T2

and hence

a2i
c

Y+
∥
∥
∥
∥

0 −λc1

0 λc2

∥
∥
∥
∥=−2π |Y∞|(1,1)C0T2.

It is not difficult to show now that the last equality holds if and only if c1 = Rλ, c2 = Rλ for
arbitrary R.

Thus, we have found the following solution of problem (9):

U(ζ )= RY

∥
∥
∥
∥
∥

−a −i bλ2

a i bλ
2

∥
∥
∥
∥
∥
.

The solution to (9), which satisfies the symmetry condition (11), based on (14) and (15) is

U(ζ )=Y

∥
∥
∥
∥
∥

a(R − R) −i b(λ2 R +λ2 R)+2i a R/c

−a(R − R) i b(λ
2

R +λ2 R)−2i a R/c

∥
∥
∥
∥
∥
. (22)

Using the representations (4), (6) we get after some algebra

F(ζ )=a(R − R)(Y1 −Y2)/(i
√

xc − ζ ),
Z(ζ )= 2√

xc − ζ
[a

c
R(Y1 −Y2)−b

(
Re(λ2 R)Y1 −Re(λ

2
R)Y2

)]
.

(23)

We set R = reiϕ ; then from (23) one can conclude that both functions F and Z depend on
the imaginary part of R only. According to the last remark, taking R = i r with an arbitrary
real r , we get

F(ζ )=−r
√
εkc(Y1 −Y2)/

√
xc − ζ ,

Z(ζ )= r

√
εk

c

[√
(c − ε)(c + k)√

εk

(Y1 +Y2)√
xc − ζ − i

(Y1 −Y2)√
xc − ζ

]
.

(24)

Accordingly,

ω(ζ )= F

Z
=−i c

[
1+ i

h

2π
Y1 +Y2

Y1 −Y2

]−1

with the constant h being defined in (21).
Both functions in (24) have the point ζ =1 as a singular point. Calculations in the vicin-

ity of this point can be performed using the analytical continuation into the region |ζ −1|<1,
Im ζ >0 [23, Equation 15.3.6]:
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Y1(1)=(−ζ )α−1/2 {γ (α,β) f1(ζ ;α,β)+γ (α,−β) f1(ζ ;α,−β)} ,
Y2(1)=(−ζ )α−1/2ei 2πα {γ (−α,β) f1(ζ ;α,β)+γ (−α,−β) f1(ζ ;α,−β)} ,

(25)

where

γ (α,β)=B(−2β,1/2+α+β),
f1(ζ ;α,β)= (1− ζ )β−1/2F(1/2+α+β,1/2+α+β;1+2β;1− ζ ).

Our solution (24) contains two real parameters r and xc>1 which can be determined from
physical conditions. For example, we can fix the location of point B in Gz , i.e., the constants
L and H f − Hs or the coordinates of point D (l and Hs). Here we shall fix H f − Hs and Hs .
Then r and xc are determined from the following system:

r
√
εkcI1 =

∫ 1

0
Re[F(ξ)]d ξ = r

√
εkc

∫ 1

0

Re[Y2(ξ)−Y1(ξ)]√
xc − ξ d ξ =−k(H f − Hs),

r
√
εk
c I2 =

∫ 0

−∞
Im[Z(ξ)]d ξ = r

√
εk

c

∫ 0

−∞
Y2(ξ)−Y1(ξ)√

xc − ξ d ξ = Hs .

(26)

In accordance with (13), (25), (18) the integrals I1, I2 can be written as

I1 =
∫ 0·5

0

Re[Y2(0)(ξ)−Y1(0)(ξ)]√
xc − ξ d ξ +

∫ 1

0·5
Re[Y2(1)(ξ)−Y1(1)(ξ)]√

xc − ξ d ξ,

I2 =h
∫ −1

−∞
Y∞(ξ)√

xc − ξ d ξ +
∫ 0

−1

Y2(0)(ξ)−Y1(0)(ξ)√
xc − ξ d ξ.

Note that according to (18), (19)

∫ −1

−∞
Y∞(ξ)√

xc − ξ d ξ =
∫ 0

−1

(1− ξ)β−1/2
√

1− xcξ
F(1/2+α+β,1/2−α+β;1; ξ)d ξ.

From here we get a nonlinear equation cI1/I2 =kq (recall that q = H f /Hs −1) from which we
determined xc by the Mathematica routine FindRoot [25, pp. 692–695]. The found value of
xc we put into one of the equations of the system (26) and calculated r . Eventually we used
the ParametricPlot routine of Mathematica [25, p. 167] to calculate both free surfaces as
parametric plots based on:

x∗ = x

Hs
= 1

I2
Re

∫ ζ

0
Z(ζ )dζ, y∗ = y

Hs
= 1

I2
Re

∫ ζ

0
Z(ζ )dζ.

In particular, the tongue sizes are:

l∗ =
√
(c − ε)(c + k)

εk

∫ 0

−1

[
Y1(0)(ξ)+Y2(0)(ξ)√

xc − ξ + (−ξ)−3/2 Y1(∞)(1/ξ)+Y2(∞)(1/ξ)√
1− xcξ

]

d ξ,

L∗ =
√
(c − ε)(c + k)

εk

∫ 1

0

Y1(ξ)+Y2(ξ)√
xc − ξ d ξ.

(27)

We note that an alternative method based on the reference function [26] can be
implemented.
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5. Results, hydraulic model and conclusion

We fixed 1/δ=0·03 (the value relevant to the Gulf of Oman) and plotted the phreatic surface
and sharp interface for q = (H f − Hs)/Hs =0·1, ε/k =0·015,0·02,0·025 (Figure 3, curve pairs
1–3, correspondingly). These values of q and ε/k were selected based on typical hydrogeolog-
ical data from [1, 10] and our own experiments and field studies in the vadose zone.

Dropping the superscripts in (27) we plotted in Figure 4 L(q) and l(q) (curves 1 and 2,
respectively) for ε/k =0·02. Figure 5 shows L, l and L − l as functions of ε plotted for q =0·1
(curves 1–3, correspondingly).

We note that, although our physical coordinates are originated at point A and we obtained
L for BC , practically L + Ls (Figure 1a) is fixed and A should be found from our solution,
i.e., both A and D are a priori unknown fronts of the free surface (AD).

As Figures 3 and 5 show, for increasing ε the fresh-water strip (L) and its part where any
well can be screened up to the bedrock, (L − l) shrinks. Based on our conceptual model in
Figure 1 it implies further propagation of the encroached saline trapezium.

An increase of q (i.e., H f ) according to Figure 4 results in a practically linear increase of
L and no changes in l. Hydrologically it means sweeping of the propagated tongue back to
the shore line by increasing the acting head. In Oman and UAE this has been achieved by
artificial recharge of unconfined aquifers from retention dams that intercept runoff, generate
groundwater mounds and maintain higher H f than in unreplenished conditions [2, 10].

Now we compare our hydrodynamic (potential) solution with the hydraulic (DF) approx-
imation, which is, according to [4, p. 76], “the only simple tool available to most engineers
and hydrologists” (see also [6, 7]). Such comparisons are important to test the accuracy of
hydraulic models (e.g., [12, Chapter 10], [27]) against the potential model and the sharp inter-
face model against variable density-salinity ones [3, cases 4.2–4.3].

We divide our flow (Figure 1d) into zones D1 D2 A (zone 1) and C B D2 D1 (zone 2) such
that D1 is the tip of the DF interface located at a distance lD from the triple point (lD �= l).
We introduce the discharge potential �d according to [6, pp. 108–112]. This potential satisfies
the governing equation
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Figure 3. Phreatic surface (upper curve) and sharp
interface (lower curve) in hydrodynamic model for
q =0·1, ε/k =0·015,0·02,0·025.
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Figure 4. Fresh-water zone length L (curve 1) in
hydrodynamic model, tongue length l (curve 2) and
fresh-water zone length in hydraulic model L D (curve
3) as functions of q for ε/k =0·02.
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d2�D

dx2
= ε, on − L ≤ x ≤0, (28)

where

�D = k(h f +hs)
2/2, on − lD ≤ x ≤0,

�D = k(h f 0 + HS)
2/2, on − L ≤ x ≤−lD,

where h f (x) is the height of the DF water table above MSL in AD1 D2, hs(x) is the depth
of the interface below MSL (h f ,hs > 0) and h f 0(x) is the height of the DF water table in
B D2 D1C .

According to a standard set of DF assumptions, the pressure is hydrostatic both in the mov-
ing groundwater and stagnant sea water and therefore hs = δh f . We integrate (28) once in the
interval −lD < x < 0 and get −Q DF (x)= k(h f + hs)dh f /dx = εx + c1 where Q DF is the flow
rate above the interface, which decreases from Q0 along D1 D2 to 0 at point A. Therefore, the
first constant of integration is c1 = 0. A second integration yields k(1 + δ)h2

f = εx2 + c2. The
second constant of integration is c2 =0 because h f (0)=0. Eventually, the DF phreatic surface
and interface in zone 1 are described by:

h f =−
√

ε

k(1+ δ) x, hs = δh f , lD = Hs

δ

√
1+ δ
ε/k

. (29)

Equation (29) complements the catalogue of straight phreatic surface-interface solutions [18,
28]. Thus, the fragment AD1 D2 is a triangle (Figure 2d).

In zone 2 Equation (28) is integrated analogously, giving a hyperbolic water table

h f 0 + Hs =
√
ε

k
x2 + c3x + c4.

The integration constant c3 is found from the condition that at cross-section D1 D2 the
flow rate Q DF between two zones is continuous and equals Q0 =εlD . This immediately gives
c3 =0. The constant c4 is found from the condition that the hyperbolic and straight limbs of
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Figure 5. Flow-domain dimensions L, l and L − l
(curves 1-3) in hydrodynamic model and lD , L D

(curves 4, 5) in hydraulic model as functions of ε at
q =0·1.
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Figure 6. Water table and sharp interface for q = 0·1,
ε/k = 0·02 according to the potential (curve pairs 1)
and DF (curve pairs 2) models.
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the water table coincide at point D2 which results in c4 = H2
s (1 + δ)/δ. Finally we obtain for

BD2

h f 0 =
√
ε

k
x2 + H2

s
1+ δ
δ

− Hs . (30)

The water table elevation at point B is H f − Hs , which upon substitution in (30) gives

L∗
D = L D

Hs
=

√√
√
√ H2

f

H2
s

− 1+ δ
δ
/

√
ε

k
. (31)

From (31) we see that the DF problem is solvable if H f /Hs >
√
(1+ δ)/δ. This condition (simi-

larly to one in the full potential model) states that water moves from left to right in Figure 2d.
In Figure 6 we show the water table and interface for q = 0·1, ε/k = 0·02 calculated from

the potential (curves 1) and DF (curves 2) models. In Figure 4 (curve 3) we plot L D(q) from
(31). This curve can hardly be discerned from L(q) in the potential model. We note that,
according to (29), lD ≈1·243, which is higher than l. The DF sizes lD and L D are also shown
in Figure 5 as functions of ε/k (curves 4 and 5). As we can see, curve 5 is nearly identical
with L obtained from the potential model, while curve 4 is somewhat higher than l.

Overall, the DF model gives a reasonable prediction of the interface and water table and
we extended this model to the catchment scale hydrologic systems [29–30]. If the aquifer
thickness is much larger than its height (e.g., in the coastal zones of Oman and UAE, com-
mon height-to-length ratios are ∼ (50,600)m/(5−50)km [2, 8]) then, instead of the hydrody-
namic equation (27), one can use its simple hydraulic alternatives (29) and (31), which can be
more easily comprehended (e.g. from (31), and one can immediately see that L D ∼1/

√
ε).

Thus, we implemented the Polubarinova-Kochina technique to tackle a new boundary-value
problem, which is mathematically reduced to the reconstruction of two holomorphic functions
in a domain having a phreatic surface and an abrupt interface between fresh and saline water.
The imaginary and real parts of the functions form a linear combination along the bound-
aries of the flow domain. We obtained a rigorous analytical solution which is computationally
reduced to a numerical integration of hypergeometric functions. This solution is compared with
a DF solution which gives a straight interface and a water table consisting of a straight line
concatenated with a hyperbola. The effect of the intensity of a distributed sink (evaporation
or spread pumping), density contrast, mean sea level and hydraulic head in the highland area
feeding a coastal aquifer on the shape of the free surfaces has been investigated.
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